Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 43
Filter
1.
Int J Mol Sci ; 24(20)2023 Oct 19.
Article in English | MEDLINE | ID: mdl-37895049

ABSTRACT

Advanced reproductive technologies are utilized to identify the genetic mutations that lead to spermatogenic impairment, and allow informed genetic counseling to patients to prevent the transmission of genetic defects to offspring. The purpose of this study was to identify potential single nucleotide polymorphisms (SNPs) associated with male infertility. Genetic variants that may cause infertility are identified by combining the targeted next-generation sequencing (NGS) panel and whole exome sequencing (WES). The validation step of Sanger sequencing adds confidence to the identified variants. Our analysis revealed five distinct affected genes covering seven SNPs based on the targeted NGS panel and WES data: SPATA16 (rs16846616, 1515442, 1515441), CFTR (rs213950), KIF6 (rs2273063), STPG2 (r2903150), and DRC7 (rs3809611). Infertile men have a higher mutation rate than fertile men, especially those with azoospermia. These findings strongly support the hypothesis that the dysfunction of microtubule-related and spermatogenesis-specific genes contributes to idiopathic male infertility. The SPATA16, CFTR, KIF6, STPG2, and DRC7 mutations are associated with male infertility, specifically azoospermia, and a further examination of this genetic function is required.


Subject(s)
Azoospermia , Infertility, Male , Humans , Male , Azoospermia/genetics , Cystic Fibrosis Transmembrane Conductance Regulator/genetics , Infertility, Male/genetics , Mutation , Multigene Family
2.
Cell Death Dis ; 14(6): 369, 2023 06 21.
Article in English | MEDLINE | ID: mdl-37344492

ABSTRACT

Acute lung injury (ALI) is characterised by severe pulmonary inflammation, alveolar-capillary barrier disruption, and pulmonary oedema. Therefore, establishing effective therapeutic targets for ALI prevention is crucial. The present study reports a novel function of RNF128 in regulating LPS-induced ALI. Severe lung damage and increased immune cell infiltration were detected in RNF128-deficient mice. In vitro experiments revealed that RNF128 inhibits neutrophil activation by binding to myeloperoxidase (MPO) and reducing its levels and activity. Moreover, RNF128 regulates alveolar macrophage activation and neutrophil infiltration by interacting with TLR4, targeting it for degradation, and inhibiting NF-κB activation, hence decreasing pro-inflammatory cytokines. Our results demonstrate for the first time that RNF128 is a negative regulator of MPO and TLR4 in neutrophils and alveolar macrophages, respectively. However, AAV9-mediated RNF128 overexpression alleviated lung tissue damage and reduced inflammatory cell infiltration. Thus, RNF128 is a promising therapeutic candidate for pharmacological interventions in ALI.


Subject(s)
Acute Lung Injury , NF-kappa B , Ubiquitin-Protein Ligases , Animals , Mice , Acute Lung Injury/chemically induced , Acute Lung Injury/genetics , Acute Lung Injury/prevention & control , Lipopolysaccharides/pharmacology , Lung/metabolism , Neutrophil Infiltration , NF-kappa B/metabolism , Peroxidase/metabolism , Toll-Like Receptor 4/metabolism , Ubiquitin-Protein Ligases/metabolism
4.
Front Neurosci ; 17: 1115242, 2023.
Article in English | MEDLINE | ID: mdl-37051142

ABSTRACT

Introduction: The diagnosis and assessment of neuropathy severity of diabetic sensorimotor polyneuropathy (DSPN) are mainly based on clinical neuropathy scores and electrophysiologic studies. This study aimed to determine whether quantitative thermal testing (QTT) can be used as a screening and follow-up tool for DSPN of prediabetes and type 2 diabetes at baseline and at 1-year follow-up. Methods: All patients were assessed using the Toronto Clinical Neuropathy Score (TCNS) and underwent electrophysiological testing, including a nerve conduction study (NCS) and QTT, at baseline and at a 1-year follow-up. The TCNS and the composite scores of nerve conduction were used to assess the severity of DSPN. The DSPN status at the 1-year follow-up was classified as remaining no DSPN, remaining DSPN, regression to no DSPN, or progression to DSPN. Results: Diabetic sensorimotor polyneuropathy was initially diagnosed in 89 patients with prediabetes and type 2 diabetes (22%). The regressed to no DSPN in 29 patients and progressed to DSPN in 20 patients at the 1-year follow-up. TCNS was significantly correlated with composite scores of nerve conduction, hand cold detection threshold (CDT), hand warm detection threshold (WDT), foot CDT, and foot WDT. Stepwise logistic regression demonstrated that the foot CDT (p < 0.0001) was independently associated with the presence of DSPN. The TCNS, composite scores of the nerve conduction, hand WDT, hand CDT, foot WDT, and foot CDT were all statistically significant among the four different DSPN status groups at two different time periods (baseline and the 1-year follow-up). Conclusion: The foot CDT can be used as an initial screening tool for DSPN alternatively. The characteristics of nerve damage after 1 year of DSPN can be progressive or reversible, and the neurological functions of large and small fibers have a parallel trend, which can be objectively measured by NCS and QTT.

5.
J Clin Med ; 12(4)2023 Feb 14.
Article in English | MEDLINE | ID: mdl-36836052

ABSTRACT

The Composite Autonomic Scoring Scale (CASS) is a quantitative scoring system that integrates the sudomotor, the cardiovagal, and the adrenergic subscores, and the Composite Autonomic Symptom Scale 31 (COMPASS 31) is based on a well-established comprehensive questionnaire designed to assess the autonomic symptoms across multiple domains. We tested the hypothesis that electrochemical skin conductance (Sudoscan) can be a substitute for the quantitative sudomotor axon reflex test (QSART) in the sudomotor domain and assessed its correlation with COMPASS 31 in patients with Parkinson's disease (PD). Fifty-five patients with PD underwent clinical assessment and cardiovascular autonomic function tests and completed the COMPASS 31 questionnaire. We compared the modified CASS (integrating the Sudoscan-based sudomotor, adrenergic, and cardiovagal subscores) and CASS subscores (the sum of the adrenergic and cardiovagal subscores). The total weighted score of COMPASS 31 was significantly correlated with both the modified CASS and the CASS subscore (p = 0.007 and p = 0.019). The correlation of the total weighted score of COMPASS 31 increased from 0.316 (CASS subscores) to 0.361 (modified CASS). When we added the Sudoscan-based sudomotor subscore, the case numbers for autonomic neuropathy (AN) increased from 22 (40%, CASS subscores) to 40 (72.7%, modified CASS). The modified CASS not only better reflects the exact autonomic function, but also improves the characterization and quantification of AN in patients with PD. In areas in which a QSART facility is not easily available, Sudoscan could be a time-saving substitution.

6.
Invest Ophthalmol Vis Sci ; 64(1): 17, 2023 Jan 03.
Article in English | MEDLINE | ID: mdl-36689234

ABSTRACT

Purpose: Photolabile paper-based chips were developed to isolate extracellular vesicles (EVs) from small-volume samples (less than 30 µL), such as vitreous humor. Putative neuroprotective effects of EVs' microRNAs were investigated by using the paper chip and a rodent model with nonarteritic anterior ischemic optic neuropathy (rNAION). Methods: rNAION was established using laser-induced photoactivation of rose bengal administered intravenously. On days 0, 0.25, 1, 3, and 7 after rNAION induction, CD63-positive EV microRNAs (CD63+-EV miRNAs) in vitreous humor samples were enriched using the paper chip and assessed using microarray and quantitative RT-PCR analyses. The viability and visual function of retinal ganglion cells (RGCs) were further assessed by measuring photopic flash visual evoked potentials (FVEPs). Results: We identified 38 different variations of CD63+-EV miRNAs with more than twofold altered expressions. Among them, M1-related miRNA, mR-31a-5p, and M2-related miRNA, miR-125a-5p, miR-182, miR-181a-5p, and miR-124-3, were capable of coordinating anti-inflammatory reactions during rNAION because of their capacity to activate macrophages. In particular, miR-124, having the most dramatic alteration of gene expression, was synthesized and injected intravitreally. Compared to controls, rats that received miR-124 had shown increased RGC survivability and improved visual function. Conclusions: Our research team has developed a paper-based chip capable of capturing EVs that can be released after UV exposure. The quantity and quality of EV-miRNAs extracted are adequate for microarray and quantitative RT-PCR analyses. Animal studies suggest that miR-124 may play a neuroprotective role in the natural recovery of rNAION and holds the potential to be a novel treatment option.


Subject(s)
Extracellular Vesicles , MicroRNAs , Optic Neuropathy, Ischemic , Rats , Animals , Retinal Ganglion Cells , Evoked Potentials, Visual , MicroRNAs/genetics
7.
Front Pharmacol ; 13: 1074986, 2022.
Article in English | MEDLINE | ID: mdl-36582541

ABSTRACT

Dysregulation of macrophages in the pro-inflammatory (M1) and anti-inflammatory (M2) sub-phenotypes is a crucial element in several inflammation-related diseases and injuries. We investigated the role of aquaporin (AQP) in macrophage polarization using AQP pan-inhibitor mercury chloride (HgCl2). Lipopolysaccharides (LPSs) induced the expression of AQP-1 and AQP-9 which increased the cell size of bone marrow-derived macrophages. The inhibition of AQPs by HgCl2 abolished cell size changes and significantly suppressed M1 polarization. HgCl2 significantly reduced the activation of the nuclear factor kappa B (NF-κB) and p38 mitogen-activated protein kinase (MAPK) pathways and inhibited the production of IL-1ß. HgCl2 attenuated LPS-induced activation of mitochondria and reactive oxygen species production and autophagy was promoted by HgCl2. The increase in the light chain three II/light chain three I ratio and the reduction in PTEN-induced kinase one expression suggests the recycling of damaged mitochondria and the restoration of mitochondrial activity by HgCl2. In summary, the present study demonstrates a possible mechanism of the AQP inhibitor HgCl2 in macrophage M1 polarization through the restriction of cell volume change, suppression of the p38 MAPK/NFκB pathway, and promotion of autophagy.

8.
Int J Mol Sci ; 23(13)2022 Jun 27.
Article in English | MEDLINE | ID: mdl-35806148

ABSTRACT

Erythropoietin (EPO) is known as a hormone for erythropoiesis in response to anemia and hypoxia. However, the effect of EPO is not only limited to hematopoietic tissue. Several studies have highlighted the neuroprotective function of EPO in extra-hematopoietic tissues, especially the retina. EPO could interact with its heterodimer receptor (EPOR/ßcR) to exert its anti-apoptosis, anti-inflammation and anti-oxidation effects in preventing retinal ganglion cells death through different intracellular signaling pathways. In this review, we summarized the available pre-clinical studies of EPO in treating glaucomatous optic neuropathy, optic neuritis, non-arteritic anterior ischemic optic neuropathy and traumatic optic neuropathy. In addition, we explore the future strategies of EPO for optic nerve protection and repair, including advances in EPO derivates, and EPO deliveries. These strategies will lead to a new chapter in the treatment of optic neuropathy.


Subject(s)
Erythropoietin , Optic Nerve Diseases , Optic Nerve Injuries , Optic Neuropathy, Ischemic , Epoetin Alfa , Erythropoietin/metabolism , Erythropoietin/therapeutic use , Humans , Optic Nerve/metabolism , Optic Nerve Diseases/drug therapy , Optic Nerve Injuries/drug therapy , Optic Neuropathy, Ischemic/drug therapy , Receptors, Erythropoietin/metabolism
9.
Sci Rep ; 12(1): 12555, 2022 07 22.
Article in English | MEDLINE | ID: mdl-35869245

ABSTRACT

Antibodies recognize protein antigens with exquisite specificity in a complex aqueous environment, where interfacial waters are an integral part of the antibody-protein complex interfaces. In this work, we elucidate, with computational analyses, the principles governing the antibodies' specificity and affinity towards their cognate protein antigens in the presence of explicit interfacial waters. Experimentally, in four model antibody-protein complexes, we compared the contributions of the interaction types in antibody-protein antigen complex interfaces with the antibody variants selected from phage-displayed synthetic antibody libraries. Evidently, the specific interactions involving a subset of aromatic CDR (complementarity determining region) residues largely form the predominant determinant underlying the specificity of the antibody-protein complexes in nature. The interfacial direct/water-mediated hydrogen bonds accompanying the CDR aromatic interactions are optimized locally but contribute little in determining the epitope location. The results provide insights into the phenomenon that natural antibodies with limited sequence and structural variations in an antibody repertoire can recognize seemingly unlimited protein antigens. Our work suggests guidelines in designing functional artificial antibody repertoires with practical applications in developing novel antibody-based therapeutics and diagnostics for treating and preventing human diseases.


Subject(s)
Amino Acids , Complementarity Determining Regions , Antibody Affinity , Antibody Specificity , Antigen-Antibody Complex , Antigens , Complementarity Determining Regions/chemistry , Humans , Proteins
10.
ACS Appl Mater Interfaces ; 13(50): 60612-60624, 2021 Dec 22.
Article in English | MEDLINE | ID: mdl-34902239

ABSTRACT

New analytical techniques that overcome major drawbacks of current routinely used viral infection diagnosis methods, i.e., the long analysis time and laboriousness of real-time reverse-transcription polymerase chain reaction (qRT-PCR) and the insufficient sensitivity of "antigen tests", are urgently needed in the context of SARS-CoV-2 and other highly contagious viruses. Here, we report on an antifouling terpolymer-brush biointerface that enables the rapid and sensitive detection of SARS-CoV-2 in untreated clinical samples. The developed biointerface carries a tailored composition of zwitterionic and non-ionic moieties and allows for the significant improvement of antifouling capabilities when postmodified with biorecognition elements and exposed to complex media. When deployed on a surface of piezoelectric sensor and postmodified with human-cell-expressed antibodies specific to the nucleocapsid (N) protein of SARS-CoV-2, it made possible the quantitative analysis of untreated samples by a direct detection assay format without the need of additional amplification steps. Natively occurring N-protein-vRNA complexes, usually disrupted during the sample pre-treatment steps, were detected in the untreated clinical samples. This biosensor design improved the bioassay sensitivity to a clinically relevant limit of detection of 1.3 × 104 PFU/mL within a detection time of only 20 min. The high specificity toward N-protein-vRNA complexes was validated both by mass spectrometry and qRT-PCR. The performance characteristics were confirmed by qRT-PCR through a comparative study using a set of clinical nasopharyngeal swab samples. We further demonstrate the extraordinary fouling resistance of this biointerface through exposure to other commonly used crude biological samples (including blood plasma, oropharyngeal, stool, and nasopharyngeal swabs), measured via both the surface plasmon resonance and piezoelectric measurements, which highlights the potential to serve as a generic platform for a wide range of biosensing applications.


Subject(s)
COVID-19 Testing , COVID-19/diagnosis , Coronavirus Nucleocapsid Proteins/chemistry , Nasal Mucosa/virology , Polymers/chemistry , RNA, Viral/metabolism , SARS-CoV-2 , Biofouling , Biological Assay , Biosensing Techniques , Humans , Ions , Limit of Detection , Mass Spectrometry , Nasopharynx/virology , Phosphoproteins/chemistry , Reproducibility of Results , Reverse Transcriptase Polymerase Chain Reaction , Sensitivity and Specificity , Specimen Handling
11.
Invest Ophthalmol Vis Sci ; 62(13): 12, 2021 10 04.
Article in English | MEDLINE | ID: mdl-34661609

ABSTRACT

Purpose: The purpose of this study was to develop a preclinical compound, ITRI-E-(S)4046, a dual synergistic inhibitor of myosin light chain kinase 4 (MYLK4) and Rho-related protein kinase (ROCK), for reducing intraocular pressure (IOP). Methods: ITRI-E-(S)4046 is an amino-pyrazole derivative with physical and chemical properties suitable for ophthalmic formulation. In vitro kinase inhibition was evaluated using the Kinase-Glo Luminescent Kinase Assays. A comprehensive kinase selectivity analysis of ITRI-E-(S)4046 was performed using the KINOMEscan assay from DiscoverRx. The IOP reduction and tolerability of ITRI-E-(S)4046 were assessed in ocular normotensive rabbits, ocular normotensive non-human primates, and ocular hypertensive rabbits. In vivo studies were conducted to assess drug concentrations in ocular tissue. The adverse ocular effects of rabbit eyes were evaluated following the OECD405 guidelines. Results: ITRI-E-(S)4046 showed highly selective kinase inhibitory activity against ROCK1/2, MYLK4, and mitogen-activated protein kinase kinase kinase 19 (MAP3K19), with high specificity against protein kinase A, G, and C families. In ocular normotensive rabbits and non-human primates, the mean IOP reductions of 0.1% ITRI-E-(S)4046 eye drops were 29.8% and 28.5%, respectively. In hypertonic saline-induced and magnetic beads-induced ocular hypertensive rabbits, the mean IOP reductions of ITRI-E-(S)4046 0.1% eye drops were 46.9% and 22.0%, respectively. ITRI-E-(S)4046 was well tolerated with only temporary and minor signs of hyperemia. Conclusions: ITRI-E-(S)4046 is a novel type of highly specific ROCK1/2 and MYLK4 inhibitor that can reduce IOP in normotensive and hypertensive animal models. It has the potential to become an effective and well-tolerated treatment for glaucoma.


Subject(s)
Benzoates/pharmacology , Calcium-Binding Proteins/antagonists & inhibitors , Intraocular Pressure/drug effects , Isoquinolines/pharmacology , Myosin-Light-Chain Kinase/antagonists & inhibitors , Ocular Hypertension/drug therapy , Sulfonamides/pharmacology , beta-Alanine/analogs & derivatives , Animals , Disease Models, Animal , Humans , Macaca , Male , Ocular Hypertension/physiopathology , Rabbits , Tonometry, Ocular , beta-Alanine/pharmacology , rho-Associated Kinases/antagonists & inhibitors
12.
Cell Death Dis ; 12(11): 983, 2021 10 22.
Article in English | MEDLINE | ID: mdl-34686650

ABSTRACT

Chronic and persistent inflammation is a well-known carcinogenesis promoter. Hepatocellular carcinoma (HCC) is one of the most common inflammation-associated cancers; most HCCs arise in the setting of chronic inflammation and hepatic injury. Both NF-κB and STAT3 are important regulators of inflammation. Centrosomal P4.1-associated protein (CPAP), a centrosomal protein that participates primarily in centrosome functions, is overexpressed in HCC and can increase TNF-α-mediated NF-κB activation and IL-6-induced STAT3 activation. A transgenic (Tg) mouse model with hepatocyte-specific CPAP expression was established to investigate the physiological role of CPAP in hepatocarcinogenesis. Obvious inflammatory cell accumulation and fatty change were observed in the livers of CPAP Tg mice. The alanine aminotransferase (ALT) level and the expression levels of inflammatory genes, such as IL-6, IL-1ß and TNF-α, were higher in CPAP Tg mice than in wild type (WT) mice. High-dose/short-term treatment with diethylnitrosamine (DEN) increased the ALT level, proinflammatory gene expression levels, and STAT3 and NF-κB activation in CPAP Tg mice; low-dose/long-term DEN treatment induced more severe liver tumor formation in CPAP Tg mice than in WT mice. CPAP can increase the expression of chemokine (C-C motif) ligand 16 (CCL-16), an important chemotactic cytokine, in human hepatocytes. CCL-16 expression is positively correlated with CPAP and TNF-α mRNA expression in the peritumoral part of HCC. In summary, these results suggest that CPAP may promote hepatocarcinogenesis through enhancing the inflammation pathway via increasing the expression of CCL-16.


Subject(s)
Carcinoma, Hepatocellular/etiology , Carcinoma, Hepatocellular/physiopathology , Hepatocytes/immunology , Inflammation/etiology , Liver Neoplasms/etiology , Microtubule-Associated Proteins/adverse effects , Animals , Chronic Disease , Humans , Inflammation/physiopathology , Liver Neoplasms/physiopathology , Mice
13.
Sci Rep ; 11(1): 15430, 2021 07 29.
Article in English | MEDLINE | ID: mdl-34326410

ABSTRACT

Mesothelin (MSLN) is an attractive candidate of targeted therapy for several cancers, and hence there are increasing needs to develop MSLN-targeting strategies for cancer therapeutics. Antibody-drug conjugates (ADCs) targeting MSLN have been demonstrated to be a viable strategy in treating MSLN-positive cancers. However, developing antibodies as targeting modules in ADCs for toxic payload delivery to the tumor site but not to normal tissues is not a straightforward task with many potential hurdles. In this work, we established a high throughput engineering platform to develop and optimize anti-MSLN ADCs by characterizing more than 300 scFv CDR-variants and more than 50 IgG CDR-variants of a parent anti-MSLN antibody as candidates for ADCs. The results indicate that only a small portion of the complementarity determining region (CDR) residues are indispensable in the MSLN-specific targeting. Also, the enhancement of the hydrophilicity of the rest of the CDR residues could drastically increase the overall solubility of the optimized anti-MSLN antibodies, and thus substantially improve the efficacies of the ADCs in treating human gastric and pancreatic tumor xenograft models in mice. We demonstrated that the in vivo treatments with the optimized ADCs resulted in almost complete eradication of the xenograft tumors at the treatment endpoints, without detectable off-target toxicity because of the ADCs' high specificity targeting the cell surface tumor-associated MSLN. The technological platform can be applied to optimize the antibody sequences for more effective targeting modules of ADCs, even when the candidate antibodies are not necessarily feasible for the ADC development due to the antibodies' inferior solubility or affinity/specificity to the target antigen.


Subject(s)
GPI-Linked Proteins/antagonists & inhibitors , GPI-Linked Proteins/metabolism , Immunoconjugates/administration & dosage , Molecular Targeted Therapy/methods , Pancreatic Neoplasms/drug therapy , Pancreatic Neoplasms/metabolism , Stomach Neoplasms/drug therapy , Stomach Neoplasms/metabolism , Xenograft Model Antitumor Assays/methods , Animals , Cell Line, Tumor , Complementarity Determining Regions/immunology , Disease Models, Animal , GPI-Linked Proteins/immunology , Heterografts , Humans , Immunoconjugates/immunology , Immunoglobulin G/immunology , Injections, Intravenous , Male , Mesothelin , Mice , Mice, Inbred NOD , Mice, SCID , Pancreatic Neoplasms/pathology , Protein Engineering/methods , Stomach Neoplasms/pathology , Treatment Outcome , Tumor Burden/drug effects
14.
ACS Appl Mater Interfaces ; 13(16): 19301-19311, 2021 Apr 28.
Article in English | MEDLINE | ID: mdl-33856189

ABSTRACT

Space cooling and heating consume a large proportion of global energy, so passive thermal management materials (i.e., without energy input), especially dual-mode materials including cooling and heating bifunctions, are becoming more and more attractive in many areas. Herein, a function-switchable Janus membrane between cooling and heating consisting of a multilayer structure of polyvinylidene fluoride nanofiber/zinc oxide nanosheet/carbon nanotube/Ag nanowire/polydimethylsiloxane was fabricated for comprehensive thermal management applications. In the cooling mode, the high thermal radiation emissivity (89.2%) and sunlight reflectivity (90.6%) of the Janus membrane resulted in huge temperature drops of 8.2-12.6, 9.0-14.0, and 10.9 °C for a substrate, a closed space, and a semiclosed space, respectively. When switching to the heating mode, temperature rises of 3.8-4.6, 4.0-4.8, and 12.5 °C for the substrate, closed space, and semiclosed space, respectively, were achieved owing to the high thermal radiation reflectivity (89.5%) and sunlight absorptivity (74.1%) of the membrane. Besides, the Janus membrane has outstanding comprehensive properties of the membrane, including infrared camouflaging/disguising, electromagnetic shielding (53.1 dB), solvent tolerance, waterproof properties, and high flexibility, which endow the membrane with promising application prospects.

15.
PLoS One ; 15(4): e0223208, 2020.
Article in English | MEDLINE | ID: mdl-32302311

ABSTRACT

The aim of this study was to investigate whether exogenous erythropoietin (EPO) administration attenuates N-methyl-D-aspartate (NMDA)-mediated excitotoxic retinal damage in Wistar rats. The survival rate of retinal ganglion cells (RGCs) were investigated by flat mount analysis and flow cytometry. A total of 125 male Wistar rats were randomly assigned to five groups: negative control, NMDA80 (i.e., 80 nmoles NMDA intravitreally injected), NMDA80 + 10ng EPO, NMDA80 + 50ng EPO, and NMDA80 + 250ng EPO. The NMDA80 + 50ng EPO treatment group was used to evaluate various administrated points (pre-/co-/post- administration of NMDA80). Meanwhile, the transferase dUTP Nick-End Labeling (TUNEL) assay of RGCs, the inner plexiform layer (IPL) thickness and the apoptotic signal transduction pathways of µ-calpain, Bax, and caspase 9 were assessed simultaneously using an immunohistochemical method (IHC). When EPO was co-administered with NMDA80, attenuated cell death occurred through the downregulation of the apoptotic indicators: µ-calpain was activated first (peak at ~18hrs), followed by Bax and caspase 9 (peak at ~40hrs). Furthermore, the images of retinal cross sections have clearly demonstrated that thickness of the inner plexiform layer (IPL) was significantly recovered at 40 hours after receiving intravitreal injection with NMDA80 and 50ng EPO. Exogenous EPO may protect RGCs and bipolar cell axon terminals in IPL by downregulating apoptotic factors to attenuate NMDA-mediated excitotoxic retinal damage.


Subject(s)
Apoptosis , Erythropoietin/pharmacology , N-Methylaspartate/pharmacology , Neuroprotective Agents/pharmacology , Retinal Ganglion Cells/drug effects , Animals , Caspase 9/genetics , Caspase 9/metabolism , Down-Regulation , Male , Rats , Rats, Wistar , Receptors, N-Methyl-D-Aspartate/agonists , Receptors, N-Methyl-D-Aspartate/metabolism , Retinal Ganglion Cells/metabolism , bcl-2-Associated X Protein/genetics , bcl-2-Associated X Protein/metabolism
16.
Cancer Lett ; 472: 97-107, 2020 03 01.
Article in English | MEDLINE | ID: mdl-31875524

ABSTRACT

Many Aurora-A inhibitors have been developed for cancer therapy; however, the specificity and safety of Aurora-A inhibitors remain uncertain. The Aurora-A mRNA yields nine different 5'-UTR isoforms, which result from mRNA alternative splicing. Interestingly, we found that the exon 2-containing Aurora-A mRNA isoforms are predominantly expressed in cancer cell lines as well as human colorectal cancer tissues, making the Aurora-A mRNA exon 2 a promising treatment target in Aurora-A-overexpressing cancers. In this study, a selective siRNA, siRNA-2, which targets Aurora-A mRNA exon 2, was designed to translationally inhibit the expression of Aurora-A in cancer cells but not normal cells; locked nucleic acid (LNA)-modified siRNA-2 showed improved efficacy in inhibiting Aurora-A mRNA translation and tumor growth. Xenograft animal models combined with noninvasion in vivo imaging system (IVIS) analysis further confirmed the anticancer effect of LNA-siRNA-2 with improved efficiency and safety and reduced side effects. Mice orthotopically injected with colorectal cancer cells, LNA-siRNA-2 treatment not only inhibited the tumor growth but also blocked liver and lung metastasis. The results of our study suggest that LNA-siRNA-2 has the potential to be a novel therapeutic agent for cancer treatment.


Subject(s)
Aurora Kinase A/genetics , Cell Proliferation/drug effects , Colorectal Neoplasms/genetics , Protein Isoforms/genetics , 5' Untranslated Regions/drug effects , Alternative Splicing/genetics , Animals , Aurora Kinase A/antagonists & inhibitors , Colorectal Neoplasms/pathology , HCT116 Cells , Humans , Mice , Neoplasm Metastasis , Oligonucleotides/pharmacology , Protein Isoforms/antagonists & inhibitors , RNA, Messenger/genetics , RNA, Small Interfering/pharmacology , Xenograft Model Antitumor Assays
17.
Invest Ophthalmol Vis Sci ; 60(2): 624-633, 2019 02 01.
Article in English | MEDLINE | ID: mdl-30735565

ABSTRACT

Purpose: The purpose of this study was to investigate the IOP-lowering effects of the ITRI-E-212, a new Rho-associated protein kinase (ROCK) inhibitor. ITRI-E-212 improved fluid outflow through the trabecular meshwork and reduced IOP with transient and mild conjunctival hyperemia. ITRI-E-212 can potentially be developed into new antiglaucoma agents. Methods: ITRI-E-212 was selected from more than 200 amino-isoquinoline structures because of its adequate solubility and drug-loading percentage in eye drops. ITRI-E-212 has less than 50% inhibitory concentration (IC50) against ROCK2. The in vitro kinase inhibition was evaluated using the ADP-Glo kinase assay. A comprehensive analysis of the kinase inhibitor selectivity of ITRI-E-212 was performed using the KINOMEscan methodology. The IOP-lowering effect and tolerability of ITRI-E-212 were investigated in normotensive and ocular hypertensive rabbits. The pharmacokinetics study was performed in vivo in the aqueous humor (AH), and hyperemia was assessed. Results: ITRI-E-212 showed high in vitro inhibitory activity against ROCK2 and high specificity against AGC kinases. The mean IOP-lowering effect of ITRI-E-212 in normotensive and ocular hypertensive models was 24.9% and 28.6%, respectively; 1% ITRI-E-212 produced notable reductions in IOP that were sustained for at least 6 hours after each dose once per day. Only transient, mild hyperemia was observed. The compound extracted from the AH reached 78.4% ROCK2 kinase inhibition at 1 hour after dose administration and was sustained for 4 hours. Conclusions: ITRI-E-212 is a novel and highly specific ROCK2 inhibitor with the ability to lower IOP in animal models. It has favorable pharmacokinetic and ocular tolerability profiles with only minimal conjunctival hyperemia.


Subject(s)
Antihypertensive Agents/administration & dosage , Glaucoma/drug therapy , Hyperemia/chemically induced , Intraocular Pressure/drug effects , Protein Kinase Inhibitors/administration & dosage , rho-Associated Kinases/antagonists & inhibitors , Administration, Ophthalmic , Animals , Antihypertensive Agents/adverse effects , Antihypertensive Agents/pharmacokinetics , Aqueous Humor/metabolism , Conjunctiva/blood supply , Disease Models, Animal , Eyelids/blood supply , Glaucoma/physiopathology , Hyperemia/epidemiology , Incidence , Isoquinolines/administration & dosage , Isoquinolines/adverse effects , Isoquinolines/pharmacokinetics , Male , Myosin Light Chains/metabolism , Ophthalmic Solutions , Phosphorylation , Protein Kinase Inhibitors/adverse effects , Protein Kinase Inhibitors/pharmacokinetics , Rabbits
19.
Oncotarget ; 8(21): 35165-35175, 2017 May 23.
Article in English | MEDLINE | ID: mdl-28422723

ABSTRACT

Colorectal mucinous adenocarcinoma (MAC) and serrated adenocarcinoma (SAC) share many characteristics, including right-side colon location, frequent mucin production, and various molecular features. This study examined the frequency of SAC morphology in MACs. We assessed the correlation of SAC morphology with clinicopathological parameters, molecular characteristics, and patient prognosis. Eighty-eight colorectal MACs were collected and reviewed for SAC morphology according to Makinen's criteria. We sequenced KRAS and BRAF, assessed CpG island methylator phenotype (CIMP) frequency, and analyzed DNA mismatch repair enzyme levels using immunohistochemistry in tumor samples. SAC morphology was observed in 38% of MACs, and was associated with proximal location (P=0.001), BRAF mutation (P=0.042), CIMP-positive status (P=0.023), and contiguous traditional serrated adenoma (P=0.019). Multivariate analysis revealed that MACs without both SAC morphology and CIMP-positive status exhibited 3.955 times greater risk of cancer relapse than MACs having both characteristics or either one (P=0.035). Our results show that two MAC groups with distinct features can be identified using Makinen's criteria, and suggest a favorable prognostic role for the serrated neoplastic pathway in colorectal MAC.


Subject(s)
Adenocarcinoma, Mucinous/pathology , Colorectal Neoplasms/pathology , MutL Protein Homolog 1/metabolism , MutS Homolog 2 Protein/metabolism , Proto-Oncogene Proteins B-raf/genetics , Proto-Oncogene Proteins p21(ras)/genetics , Adenocarcinoma, Mucinous/classification , Adenocarcinoma, Mucinous/genetics , Adenocarcinoma, Mucinous/metabolism , Aged , Colorectal Neoplasms/classification , Colorectal Neoplasms/genetics , Colorectal Neoplasms/metabolism , CpG Islands , DNA Methylation , Female , Humans , Male , Neoplasm Staging , Prognosis , Sequence Analysis, DNA , Survival Analysis
20.
Cell Death Dis ; 8(1): e2555, 2017 01 12.
Article in English | MEDLINE | ID: mdl-28079881

ABSTRACT

By using RNA-immunoprecipitation assay following next-generation sequencing, a group of cell cycle-related genes targeted by hnRNP Q1 were identified, including Aurora-A kinase. Overexpressed hnRNP Q1 can upregulate Aurora-A protein, but not alter the mRNA level, through enhancing the translational efficiency of Aurora-A mRNA, either in a cap-dependent or -independent manner, by interacting with the 5'-UTR of Aurora-A mRNA through its RNA-binding domains (RBDs) 2 and 3. By ribosomal profiling assay further confirmed the translational regulation of Aurora-A mRNA by hnRNP Q1. Overexpression of hnRNP Q1 promotes cell proliferation and tumor growth. HnRNP Q1/ΔRBD23-truncated mutant, which loses the binding ability and translational regulation of Aurora-A mRNA, has no effect on promoting tumor growth. The expression level of hnRNP Q1 is positively correlated with Aurora-A in colorectal cancer. Taken together, our data indicate that hnRNP Q1 is a novel trans-acting factor that binds to Aurora-A mRNA 5'-UTRs and regulates its translation, which increases cell proliferation and contributes to tumorigenesis in colorectal cancer.


Subject(s)
Aurora Kinase A/genetics , Carcinogenesis/genetics , Colorectal Neoplasms/genetics , Heterogeneous-Nuclear Ribonucleoproteins/genetics , Aurora Kinase A/metabolism , Cell Line, Tumor , Cell Proliferation/genetics , Colorectal Neoplasms/pathology , Female , Gene Expression Regulation, Neoplastic , Heterogeneous-Nuclear Ribonucleoproteins/metabolism , Humans , Male , RNA Recognition Motif Proteins , RNA, Messenger/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...